Abstract Submitted
for the DFD07 Meeting of
The American Physical Society

Fluidic Control of Aerodynamic Forces on an Axisymmetric Body\(^1\) PHILIP ABRAMSON, BOJAN VUKASINOVIC, ARI GLEZER, Georgia Institute of Technology — The aerodynamic forces and moments on a wind tunnel model of an axisymmetric bluff body are modified by induced local vectoring of the separated base flow. Control is effected by an array of four integrated aft-facing synthetic jets that emanate from narrow, azimuthally-segmented slots, equally distributed around the perimeter of the circular tail end within a small backward facing step that extends into a Coanda surface. The model is suspended in the wind tunnel by eight thin wires for minimal support interference with the wake. Fluidic actuation results in a localized, segmented vectoring of the separated base flow along the rear Coanda surface and induces asymmetric aerodynamic forces and moments to effect maneuvering during flight. The aerodynamic effects associated with quasi-steady and transitory differential, asymmetric activation of the Coanda effect are characterized using direct force and PIV measurements.

\(^1\)Supported by the Army Research Office

Ari Glezer
Georgia Institute of Technology

Date submitted: 03 Aug 2007

Electronic form version 1.4