Abstract Submitted for the DFD07 Meeting of The American Physical Society

Joint multifractal analysis of intermittent fields in high-resolution DNS of turbulence¹ TAKASHI ISHIHARA, HIROTAKA HIGUCHI, Department of Computational Science and Engineering, Nagoya University — In high-Reynolds number turbulence, several intermittent fields coexist, among which are the rate ε of dissipation of turbulent energy, vorticity ω and pressure gradients gradp, etc. These intermittent fields display different degrees of correlation among them. To characterize such coexisting distributions of intermittent fields in high-Reynolds number turbulence, we apply joint multifractal analysis to the data obtained by high-resolution DNS of turbulence in a periodic box. The analysis shows that the degree of correlation between α_{ε} and α_P is considerably high, but lower than between α_{ε} and α_{Ω} , where $P = |\text{grad}p|^2$ and $\Omega = \omega^2/2$, and α_A is a local singularity strength of A.

¹Supported by Grant-in-Aids for Scientific Research (C) 19560064, from JSPS

Takashi Ishihara Department of Computational Science and Engineering, Nagoya University

Date submitted: 06 Aug 2007

Electronic form version 1.4