Abstract Submitted for the DFD07 Meeting of The American Physical Society

Active, Universal Particle Micromanipulators: CPUs for Microfluidics IGOR MEZIC, FREDERIC BOTTAUSCI, UC Santa Barbara, MICRO-NANOSCALE DYNAMICAL SYSTEMS TEAM — Current designs for Lab-on-a-Chip applications consist of a variety of separate microfluidic chambers and channels for functions such as concentration, separation, reaction and mixing of bioparticles in liquids. Here we advance an alternative concept, named μf CPU, the Microfluidic Central Processing Unit, where the key microfluidic operations are performed within a single enclosure, using software-based inputs rather than physical hardware changes, thus emulating the role of the Central Processing Unit in computers and cells in living organisms. We present an experimental embodiment of such a device and describe a variety of microfluidic forces in a time-dependent way to produce ondemand functionality. We also discuss a new microfluidic devices architecture that utilizes μf CPU as the basic processing unit and uses centralized pumping instead of integrated microfluidic pumps.

> Frederic Bottausci UC Santa Barbara

Date submitted: 06 Aug 2007

Electronic form version 1.4