Abstract Submitted for the DFD07 Meeting of The American Physical Society

Modeling The Divergence Of The Two-Point, Third-Order Velocity Correlation¹ AMITABH BHATTACHARYA, ICES, University of Texas, Austin, ROBERT MOSER, ICES and Mech. Engr., The University of Texas, Austin — Knowledge of $\Gamma_{ij}(\mathbf{x}, \mathbf{r}) = \partial \langle \mathbf{u}'_i(\mathbf{x}) \mathbf{u}'_k(\mathbf{x}) \mathbf{u}'_j(\mathbf{x} + \mathbf{r}) \rangle / \partial \mathbf{r}_k$ is crucial for modeling the subgrid force using the Optimal LES approach (Langford and Moser, (1999)). Here, a method is developed to obtain an approximation to Γ_{ij} in statistically stationary turbulence, given a finite-dimensional representation for $R_{ij}(\mathbf{x}, \mathbf{r}) = \langle \mathbf{u}'_i(\mathbf{x}) \mathbf{u}'_j(\mathbf{x} + \mathbf{r}) \rangle$. The rotationally invariant representation of R_{ij} is in terms of Structure Tensors (Kassinos, 2001), and accounts for componental and directional anisotropy. Our method is based on the fact that the evolution equation for R_{ij} is $DR_{ij}/Dt =$ $F_{ij}(\Gamma_{ij}, \Pi_{ij}, R_{ij}, G_{ij})$, where $\Pi_{ij}(\mathbf{x}, \mathbf{r})$ is the two-point pressure-strain correlation and G_{ij} is the mean velocity gradient. For $DR_{ij}/Dt = 0$, a symmetrized form of Γ_{ij} can be obtained in terms of a production term involving R_{ij} and G_{ij} (after projecting out Π_{ij} using continuity). The resulting model and it's underlying assumptions are validated by comparison with DNS.

¹Support by NSF (grant no. NSF-CTS-0352552) and AFOSR-(grant no. F49620-04-1-0032) is gratefully acknowledged.

Robert Moser ICES and Mech. Engr., The University of Texas, Austin

Date submitted: 07 Aug 2007

Electronic form version 1.4