Drag Reduction on a Circular Cylinder using Spatially Distributed Forcing

JAMES W. GREGORY, CHRISTOPHER O. PORTER, DANIEL M. SHERMAN, THOMAS E. MCLAUGHLIN, Department of Aeronautics, U.S. Air Force Academy — This work investigates the use of spatially-distributed open-loop forcing for control of vortex shedding from a circular cylinder. Force-shaped plasma actuators were used to control the flow, with the aim of reducing drag on the circular cylinder at a Reynolds number of 6500. Traditional approaches to cylinder drag reduction have typically involved two-dimensional forcing of the flow field using blowing and suction. Spatially-distributed forcing, however, involves a spanwise modulation of the forcing on the flow. Kim and Choi (Phys. Fluids 17, 033103, 2005) showed in their computations that a spanwise distribution of blowing and suction significantly altered the spanwise development of vortex shedding, reduced the strength of the vortices, and reduced the drag by 40%. The current experiments implement the method of Kim and Choi with a new type of plasma actuator where the momentum addition can be directed either normal or tangential to the surface, as well as spatially tailored in a spanwise fashion to optimize control efficacy. Force-shaped plasma actuators were applied to a 2-inch diameter circular cylinder and wake profile measurements were made at several spanwise locations to evaluate the resulting drag reduction and modification of the wake structure.

James W. Gregory
Department of Aeronautics, U.S. Air Force Academy

Date submitted: 03 Aug 2007