Optimal resistance in impact and penetration of parallel rods in a granular medium

YANG DING, LIONEL LONDON, MATEO GARCIA, DANIEL GOLDMAN, Georgia Institute of Technology, School of Physics — Inspired by foot and toe morphology in sand-running lizards, we study in laboratory experiment and experimentally validated Molecular Dynamics (MD) simulation the resistance force during penetration of parallel rods (diameter 1.27 cm) into a granular medium of plastic spheres (diameter $d = 0.6$ mm) as a function of rod separation l. We measure the normal force exerted on the rods by the medium both during normal penetration at constant velocity (≈ 10 cm/sec) and during normal impact after freefall (impact velocity ≈ 2.5 m/sec). For constant velocity penetration, the resistance force increases linearly with increasing penetration depth. The slope of this curve (force/depth) displays a maximum as a function of l at $l \approx 1.6d$. In the impact studies, we observe a maximum in the collision force at $l \approx 1.6d$ and a minimum in penetration depth at $l \approx 2d$. The extrema are correlated with an increase in lateral force between the rods indicating that jammed grains increase the effective surface area during penetration.

1Work supported by the Burroughs Wellcome Fund.