Abstract Submitted for the DFD07 Meeting of The American Physical Society

Inner-Scale Effects of Heat Release in Reacting Turbulent Shear Flows¹ ZACHARY NAGEL, WERNER J.A. DAHM, The University of Michigan — Comparisons are presented from the first inner-scaled measurements of velocity gradient quantities in reacting and nonreacting versions of otherwise identical turbulent shear flows. Distributions of gradient quantities are obtained for outer-scale Reynolds numbers $Re_{\delta} \equiv u_c \delta / \nu$ from 7,200 to 200,000. The local outer length scale δ and velocity scale u_c and associated inner scaling $\overline{(\partial u_i/\partial x_j)^n} \sim (\nu/\lambda_{\nu}^2)^n$ are used to identify the dominant physical mechanisms that produce heat release effects on the inner scales. In the nonreacting cases, classical inner scaling with the viscosity ν and inner (viscous) length scale $\lambda_{\nu} \sim \delta \cdot Re_{\delta}$ removes most differences in distributions measured at different Re_{δ} , with remaining differences being due to incomplete resolution of λ_{ν} with increasing Re_{δ} . Inertial and dissipation range spectra allow the measurement resolution scale Δ^* and the proper resolution-corrected inner scaling to be determined, with the resulting scaling verifying near-perfect similarity for all Re_{δ} . In the reacting cases, departures from this similarity reveal the true innerscale changes due to heat release. Results clearly show that when inertial and body force effects on δ and u_c are accounted for via the equivalent density, and viscous effects are accounted for via the mixture-fraction-averaged viscosity, the resolutioncorrected inner scaling reveals remaining effects of heat release on turbulent shear flows to be remarkably small.

¹Supported by NASA CUIP Grant No. NCC3-989.

Werner Dahm The University of Michigan

Date submitted: 07 Aug 2007

Electronic form version 1.4