Abstract Submitted for the DFD08 Meeting of The American Physical Society

A Posteriori Tests of an A Priori Optimized Turbulence Model for Small and Large Schmidt Number Rayleigh-Taylor Mixing¹ NICHOLAS J. MUESCHKE², Texas A&M University, OLEG SCHILLING, Lawrence Livermore National Laboratory — Data from a $1152 \times 720 \times 1280$ direct numerical simulation (DNS) of a buoyancy-driven hot/cold water channel experiment is used to construct an optimized four-equation turbulence model for Rayleigh–Taylor mixing. The transport equations for the turbulent kinetic energy and its dissipation rate and of mass fraction variance and its dissipation rate are closed a priori by minimizing the L_2 -norm between the exact unclosed terms and their gradient-diffusion or scale-similarity closures. The model is tested a posteriori by applying the model to both the Sc = 7 hot/cold water experiment and to a $Sc \sim 10^3$ salt/fresh water experiment. It is shown that the mixing layer growth and molecular mixing parameters measured from both experiments are well-predicted by the model. The dependence of the predictions on different initialization times of the model, as well on choosing constant late-time values of the parameters (rather than Reynolds numberdependent parameters), are discussed.

¹This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. ²Present address: Southwest Research Institute

> Oleg Schilling Lawrence Livermore National Laboratory

Date submitted: 06 Aug 2008

Electronic form version 1.4