Front propagation in vortex-dominated flows

GARRETT O’MALLEY, JUSTIN WINOKUR, TOM SOLOMON, Bucknell University — We present experiments that explore how the propagation of a reaction front is affected by a two-dimensional flow dominated by vortices. The reaction is the excitable Belousov-Zhabotinsky chemical reaction. The flow is driven by the interaction between an electrical current passing through the fluid and a spatially-varying magnetic field produced by an array of magnets below the fluid. For some of the experiments, the forcing is strong enough to produce a weakly turbulent flow. Measurements are made both of the enhanced diffusion coefficient \(D^* \) describing transport in the flow and of the propagation speed \(v \) of a reaction front in the same flow. Scaling of \(v \) versus \(D^* \) is compared with that for the standard Fisher-Kolmogorov-Petrovsky-Piskunov prediction \(v \sim \sqrt{D} \) (with \(D \) as the molecular diffusion coefficient) for the reaction-diffusion limit with no fluid advection. We also study the effects of superdiffusive transport and Lévy flights on front propagation in a time-dependent vortex array with wavy jet regions.

1Supported by NSF Grants DMR-0703635 and PHY-0552790.
2Current address: Dept. of Physics, Carnegie-Mellon University, Pittsburgh, PA