Dynamics of Linear and Circular DNA in Sub-Micron Channels

YENG-LONG CHEN, JEN-FANG CHANG, Institute of Physics, Academia Sinica,
PO-KENG LIN, WUNSHAIN FANN, Institute of Atomic and Molecular Sciences,
Academia Sinica — DNA dynamics in microchannels of height H may be categorized
into three regimes: I. $H > R_g$, II. $R_g > H > l_p$, and III. $l_p > H$, where R_g and
l_p are the DNA radius of gyration and persistence length, respectively. Dynamics
of DNA molecules in regime I has been extensively studied in recent theory and
experiments. It has been shown that the intra-chain hydrodynamic interactions
(HI) may strongly affect how DNA behaves under a microfluidic flow. In contrast,
 intra-chain HI is believed to be screened in regime III, as suggested by recent studies
of Doyle et al. In this work, we investigate the role of HI in regime II and how it
affects DNA of different conformation, specifically for linear and circular chains. In
order to capture the intra-chain HI, we employ lattice Boltzmann simulations for
the fluid, coupled with coarse-grained dynamics simulations for the DNA. We find
that regime II confinement affects the chain conformation and shape differently for
linear and circular chains due to the degrees of freedom for chain ends. The different
chain conformations also lead to different chain dynamic.

1NSC 95-2112-M-001-051-MY3

Yeng-Long Chen
Institute of Physics, Academia Sinica

Date submitted: 03 Aug 2008