Abstract Submitted for the DFD08 Meeting of The American Physical Society

Transition in energy spectrum of stably stratified turbulence YOSHI KIMURA, Nagoya Univ., JACKSON HERRING, NCAR — Energy spectra for forced stably stratified turbulence are investigated numerically using the Direct Numerical Simulations (DNS) with 1024³ grid points. The calculation is done by solving the 3D Navier-Stokes equations under the Boussinesq approximation pseudospectrally. Using toroidal-poloidal decomposition (Craya-Herring decomposition), the velocity field is divided into the vortex mode (ϕ_1) and the wave mode (ϕ_2). With the initial kinetic energy being zero, the ϕ_1 spectra as a function of horizontal wave numbers, k_{\perp} , first develops a k_{\perp}^{-3} spectrum for the whole k_{\perp} range, and then $k_{\perp}^{-5/3}$ part appears with rather a sharp transition wave number. Meanwhile the ϕ_2 spectra shows k_{\perp}^{-2} first, and then $k_{\perp}^{-5/3}$ part appears with the same transition wave number. Spectra for different values of the Brunt– Väisälä frequency $N^2 = 1, 10, 50$ and 100 are investigated, and we found that the k_{\perp}^{-3} part at the large scale in the phi_1 spectra is characterized as 2d turbulence, and that the whole spectrum has the form of $E(k_{\perp}) = a\eta_{\perp\phi_1}^{2/3}k_{\perp}^{-3} + C_K \varepsilon_{\perp\phi_1}^{2/3}k_{\perp}^{-5/3}$ where $\eta_{\perp\phi_1}$ is the horizontal enstrophy dissipation based on the ϕ_1 energy, and $\varepsilon_{\perp\phi_1}$ is the horizontal ϕ_1 energy dissipation. Meanwhile we obtain $E(k_{\perp}) = b\sqrt{N\varepsilon_{\perp\phi_2}}k_{\perp}^{-2} + C_K \varepsilon_{\perp\phi_2}^{2/3}k_{\perp}^{-5/3}$ for ϕ_2 where $\varepsilon_{\perp\phi_2}$ is the horizontal ϕ_2 energy dissipation. For both cases, $C_K \approx 1.2 \sim 2.0$ is obtained being close to the Kolmogorov constant.

> Yoshi Kimura Nagoya Univ.

Date submitted: 03 Aug 2008

Electronic form version 1.4