Abstract Submitted for the DFD08 Meeting of The American Physical Society

DNS of Decaying Compressible Turbulence Using Gas Kinetic Scheme¹ WEI LIAO, YAN PENG, LI-SHI LUO, Old Dominion University, ROBERT RUBINSTEIN, NASA Langley Research Center — We apply the gaskinetic scheme to direct numerical simulation of decaying compressible turbulence. We compute the kinetic energy K(t), dissipation rate $\varepsilon(t)$, probability density functions (PDFs) of the two-point longitudinal velocity difference, shocklet strength, and local Mach number. Our results reveal the following features of decaying compressible turbulence: (1) With the initial Taylor microscale Reynolds number Re_{λ} fixed, increase of initial turbulent Mach number Ma_{t} leads to an increase of the dissipation rate ε at the initial stage; (2) Change of Ma_{t} has little effect on K(t) and the long-time asymptotics of $\varepsilon(t)$; (3) At the lower $\text{Ma}_{t} (\approx 0.1)$, intermittency persists, while at the higher $\text{Ma}_{t} (\approx 0.5)$, intermittency quickly dissipates, *i.e.*, the PDF of the two-point longitudinal velocity difference becomes Gaussian independent of the separation distance δr ; and (4) the PDF's of both shock strength and the local Mach number all appear to follow scaling laws.

¹Supported by AFOSR-MURI project "Hypersonic Transition and Turbulence with Non-equilibrium Thermochemistry."

Li-Shi Luo Old Dominion University

Date submitted: 04 Aug 2008

Electronic form version 1.4