Chasing eddies and their wall signature in turbulent boundary layers at Mach 3 through 104 STEPHAN PRIEBE, IZAAK BEEKMAN, M. PINO MARTIN, Princeton University — We use a direct numerical simulation database of turbulent boundary layers,2,3,4 statistical tools,5 scientifically-rooted packet-pattern recognition,6 and validated visualization algorithms7 to identify hairpin packets and their wall signature. We investigate the variation of time scales and length scales associated with coherent structures and the role of hairpin packets on the generation of skin friction, wall-pressure loading and heat transfer.

1Funded by AFOSR Grant # FA9550-06-1-0323 and NASA Grant # NNX08AD04A.
4Beekman & Martin, APS DFD08

M. Pino Martin
Princeton University

Date submitted: 05 Aug 2008

Electronic form version 1.4