Abstract Submitted for the DFD08 Meeting of The American Physical Society

Control of the Damped, Driven Pendulum, in both Numerical Models and Physical Apparatus to develop algorithms appropriate to the control chaotic formation of Taylor Vortex Pairs in Modified Taylor-Couette Flow¹ ERIC DOUGLASS, YUNJIE ZHAO, LUCAS HILL, DAVID BRENMAN, THOMAS OLSEN, Lewis & Clark College, Portland, OR, RICHARD WIENER², Research Corporation — Chaos has been observed in the formation of Taylor Vortex pairs in Modified Taylor Couette flow with hourglass geometry.³ Control of chaos has been demonstrated in this system employing the RPF algorithm.^{4,5} Seeking alternative algorithms, we are implementing the OGY⁶ algorithm in a numerical model⁷ of a damped driven mechanical pendulum and a physical apparatus.⁸ We report on both and future plans for the Modified Taylor-Couette system.

¹Supported by Research Corporation, the Rogers Science Research Program, and NSF DMR-0241814 & DMR-0241890.

²Formerly of Pacific University, Forest Grove, OR

³Wiener *et al*, Phys. Rev. E **55**, 5489 (1997).

⁴Rollins *et al*, Phys. Rev. E **47**, R780 (1993).

⁵Wiener *et al*, Phys. Rev. Lett. **83**, 2340 (1999).

⁶E. Ott, C. Grebogi, & J. A. Yorke, Phys. Rev. Lett. **64**, 1196 (1990).

⁷G. L. Baker, Am. J. Phys. **63**, 832 (1995).

⁸J. A. Blackburn *et al*, Rev. Sci. Instr. **60**, 422 (1989).

Thomas Olsen Lewis & Clark College

Date submitted: 05 Aug 2008

Electronic form version 1.4