Stirring viscous fluid with a “taffy puller”1 MOHSEN GHEIS-ARIEHA, KELLEN SHAIN, ALEC CALHOUN2, MARK STREMLER, Virginia Tech — Taffy pulling devices are designed to repeatedly stretch and fold a viscoplastic substance, generally using three or four rotating prongs or rods. We apply this approach to mixing viscous fluid. The periodic rod motion can be analyzed using the Thurston-Nielsen classification theorem, which gives a quantitative lower bound on the exponential stretching rate in the fluid surrounding the rods. We compare the predictions of this theorem to the results of a semi-analytical Stokes flow model that is validated with experiments. We also show that fluid mixing can be increased substantially by increasing the number of stirring rods.

1Funded by NSF Grant DMS-0701126
2Now with Caterpillar, Inc.