Manipulating the Forces on a Sphere Using a Dynamic Roughness Element1 A.K. NORMAN, B.J. MCKEON, California Institute of Technology — Though the effect of distributed roughness on flow over a sphere has been examined in detail, there have been few observations as to the effect of an isolated roughness element on the forces induced on a sphere that is in uniform flow. In this experimental study, we examine how the forces are altered due to both a stationary and dynamic three-dimensional roughness element in the Reynolds number range of 5×10^4 to 5×10^5. It is found that even a small change to the geometry of the sphere, by adding a cylindrical roughness element with a width and height of 1\% the sphere diameter, dramatically alters the drag and lateral forces over a wide range of Reynolds numbers. Of particular interest is that the mean of the lateral force magnitude can be increased by a factor of about seven, compared with a stationary roughness element, by moving the isolated roughness at a constant angular velocity about the sphere. The interaction of the roughness element with the flow is examined to understand the cause of the large forces.

1Support from the National Science Foundation under Grant No. 0747672 (Program Manager William W. Schultz) is gratefully acknowledged.

Adam Norman
California Institute of Technology