Abstract Submitted for the DFD09 Meeting of The American Physical Society

Stick-slip transition at the granular critical state NICK GRAVISH, Georgia Tech, PAUL UMBANHOWAR, DANIEL I. GOLDMAN — We study the force on a flat plate (3.8 cm width, 7.0 cm depth) dragged at constant velocity vthrough the surface of a granular medium (250 μ m glass beads) as a function of volume fraction 0.57 $\langle \phi \rangle < 0.63$. The dynamics of the drag force F_d are sensitive to ϕ : we find a sharp transition in the form of F_d at a critical volume fraction $\phi_c = 0.605$. For $\phi \langle \phi_c, F_d$ increases with time and saturates, while for $\phi \rangle \phi_c$ F_d exhibits an initial peak followed by periodic oscillations at frequency f about a constant mean. The standard deviation in force (a measure of the fluctuations) shows a sharp transition at ϕ_c . The force oscillations suggest that the granular media periodically jams and flows as the plate is horizontally translated. Examining the bed surface we observe a spatially periodic scalloped feature of length λ which is equal to v/f, independent of v, and increases linearly with ϕ for $\phi > \phi_c$. By measuring the displaced volume after the drag ΔV , we observe a transition from media compaction ($\Delta V \langle 0$) for $\phi \langle \phi_c$ to dilation ($\Delta V > 0$) for $\phi > \phi_c$.

> Nick Gravish Georgia Tech

Date submitted: 06 Aug 2009

Electronic form version 1.4