Abstract Submitted for the DFD09 Meeting of The American Physical Society

High speed x-ray observation of a sand swimming lizard¹ DANIEL GOLDMAN, School of Physics, Georgia Tech, RYAN MALADEN, Bioengineering Program, Georgia Tech, YANG DING, School of Physics, Georgia Tech — We use high-speed x-ray imaging to reveal how a small (10 cm) desert dwelling lizard, the sandfish (*Scincus scincus*), swims within a granular medium, and how its locomotion is affected by the volume fraction ϕ of the media ². We use an air fluidized bed to prepare 0.3 mm glass beads (similar in size to desert sand) into naturally occurring loose ($\phi = 0.58$) and close ($\phi = 0.62$) packed states. On the surface, the lizard uses a standard diagonal gait, but once below the surface, the organism no longer uses limbs for propulsion. Instead it propagates a large amplitude single period sinusoidal traveling wave down its body and tail to propel itself at speeds up to ≈ 1 body-length/sec. For fixed ϕ the animal increases forward swimming speed v_f by increasing temporal frequency f. For fixed f, v_f is independent of ϕ , despite resistance forces that nearly double from loose to close packed states. Surprisingly, the greatest sandfish velocity (and f) occur in the close packed state.

¹Support from NSF Physics of Living Systems and Burroughs Wellcome Fund ²Maladen et. al, Science, **325**, 314, 2009

> Daniel Goldman Georgia Tech

Date submitted: 06 Aug 2009

Electronic form version 1.4