High speed x-ray observation of a sand swimming lizard1 DANIEL GOLDMAN, School of Physics, Georgia Tech, RYAN MALADEN, Bioengineering Program, Georgia Tech, YANG DING, School of Physics, Georgia Tech — We use high-speed x-ray imaging to reveal how a small (10 cm) desert dwelling lizard, the sandfish (\textit{Scincus scincus}), swims within a granular medium, and how its locomotion is affected by the volume fraction \(\phi \) of the media 2. We use an air fluidized bed to prepare 0.3 mm glass beads (similar in size to desert sand) into naturally occurring loose (\(\phi = 0.58 \)) and close (\(\phi = 0.62 \)) packed states. On the surface, the lizard uses a standard diagonal gait, but once below the surface, the organism no longer uses limbs for propulsion. Instead it propagates a large amplitude single period sinusoidal traveling wave down its body and tail to propel itself at speeds up to \(\approx 1 \) body-length/sec. For fixed \(\phi \) the animal increases forward swimming speed \(v_f \) by increasing temporal frequency \(f \). For fixed \(f \), \(v_f \) is independent of \(\phi \), despite resistance forces that nearly double from loose to close packed states. Surprisingly, the greatest sandfish velocity (and \(f \)) occur in the close packed state.

1Support from NSF Physics of Living Systems and Burroughs Wellcome Fund
2Maladen et. al, Science, \textbf{325}, 314, 2009

Daniel Goldman
Georgia Tech

Date submitted: 06 Aug 2009
Electronic form version 1.4