An Experimental Study of Circular and Rectangular Heated Jets in Cross-Flow

B.E. JOHNSON, G. ELLIOTT, K.T. CHRISTENSEN, Univ. of Illinois — Heated plumes of fluid emanating from both flush and raised stacks occur in a wide variety of technologically-relevant applications and the dispersion of this heated, and sometimes contaminated, fluid is therefore of practical concern. To this end, a detailed series of experiments are under way to document the downstream development of heated jets of both circular and rectangular cross-section emanating into a cross-flow with the intent of constructing an experimental database for validation of on-going large-eddy simulations. Multiple cross-stream velocities as well as various jet exit velocities and temperatures are under study to understand the plume development both in the near- and far-field. The jet flow is driven by a high-pressure regenerative blower and heated with an open-coil heater while the cross-flow is provided by an open circuit wind tunnel. Mean temperature fields and streamwise velocity fields are measured using a rake of Pitot-static probes and thermocouples at select locations downstream of the jet. Of particular interest, the impact of jet exit temperature, velocity and cross-section on the downstream development of the heated plume is explored. Similarities and differences between flush and raised stack configurations under identical experimental conditions will also be highlighted.

Kenneth Christensen
University of Illinois, Urbana

Date submitted: 06 Aug 2009

Electronic form version 1.4