Measurement of Fluctuating Wall Pressures Beneath a Supersonic Turbulent Boundary Layer

STEVEN BERESH, JOHN HENFLING, RUSSELL SPILLERS, BRIAN PRUETT, Sandia National Laboratories — Accurate measurement of fluctuating wall pressure spectra beneath a supersonic turbulent boundary layer has proven elusive, such that a compilation of past efforts exhibits an alarming degree of scatter and hinders the development of engineering models. Recent experiments conducted in Sandia’s Trisonic Wind Tunnel up to Mach 3 have provided wall pressure data to frequencies exceeding 100 kHz to help reconcile conflicts in the historical data. Data were acquired using piezoresistive silicon pressure transducers effective at low- and mid-range frequencies, then supplemented by piezoelectric quartz sensors capable of detecting very high frequency events. The two sensor types were dynamically calibrated against a condenser microphone reference standard, then combined into a single curve describing the wall pressure spectra. Such spectra show that an increase in Mach number produces a reduction in the normalized magnitude, though the shape of the spectra remain similar; Reynolds number effects were detectable but considerably smaller for the range of test conditions. Results are compared with historical data and consequences of the measurement limitations are discussed.

Steven Beresh
Sandia National Laboratories

Date submitted: 06 Aug 2009
Electronic form version 1.4