Abstract Submitted for the DFD09 Meeting of The American Physical Society

Spectral analysis of nonlinear flows CLARENCE ROWLEY, Princeton University, IGOR MEZIC, UC Santa Barbara, SHERVIN BAGHERI, PHILIPP SCHLATTER, DAN HENNINGSON, KTH, Stockholm — We present a technique for describing the global behavior of complex, nonlinear flows, by decomposing the flow into modes determined from spectral analysis of the Koopman operator, an infinite-dimensional linear operator associated with the full nonlinear system. These modes, referred to as Koopman modes, are associated with a particular observable, and may be determined directly from data (either numerical or experimental) using a standard Arnoldi algorithm. They have an associated temporal frequency and growth rate and may be viewed as a nonlinear generalization of global eigenmodes of a linearized system. They provide an alternative to Proper Orthogonal Decomposition, and in the case of periodic data the Koopman modes reduce to a discrete temporal Fourier transform. We illustrate the method on an example of a jet in crossflow, and show that the method captures the dominant frequencies and elucidates the associated spatial structures.

> Clarence Rowley Princeton University

Date submitted: 06 Aug 2009

Electronic form version 1.4