Abstract Submitted for the DFD09 Meeting of The American Physical Society

Jamming of Granular Flow in a Two-Dimensional Hopper¹ JUN-YAO TANG², SEPEHR SADIGHPOUR³, ROBERT BEHRINGER⁴, Duke Physics — We seek an understanding of the physics of jamming in flow from a hopper. Using spatio-temporal video data for photoelastic disks (mean diameter d) flowing through a two-dimensional hopper (opening size D.), we have found experimental support for the hypothesis that the probability of flow surviving until time t without jamming has the form $P_s(t) = \exp(-t/\tau)$. The important physics is encapsulated in τ , and how that depends on the ratio D/d. Estimates of τ vary as a power-law or an exponential in D/d for a jamming model and an arch formation model. Through particle tracking we conclude that jamming requires both a high packing fraction and a stable force chain arch at the outlet. Work in progress is yielding data for τ vs. the hopper angle as well as D/d.

¹This work has been supported by IFPRI. ²Graduate Student ³Graduate Student ⁴Advisor

> Junyao Tang Duke Physics

Date submitted: 07 Aug 2009

Electronic form version 1.4