On the stability of a recirculation bubble and its application in compact combustion1 MATT ANDERSON, PAUL STRYKOWSKI, University of Minnesota — A 2D channel flow expands asymmetrically via a sudden expansion splitter plate, the Reynolds number based on the channel height and mean velocity is 1.47×10^4. A recirculation bubble generated by a momentum-driven counter flowing secondary stream located downstream of the sudden expansion is experimentally investigated by means of hot-wire anemometry and PIV. It is conjectured that the fluid field created is one of a separated region of locally absolutely unstable flow. This separated region is the result of both the partial stagnation of the main flow due to the spreading of the second counter-current flow as well as the entrainment of the secondary jet. The secondary stream augments the initial shear layer that has been created after the expansion and a separation bubble appears. This secondary jet creates a control mechanism for the fluid field. The low-velocity zone downstream of the expansion that has been created is necessary for flame anchoring, and the large turbulence levels recorded (total turbulence levels exceeding 100% of the inlet velocity) dramatically increase mixing and may lead to more efficient compact combustion in backward-facing step-combustors.

1The authors would like to acknowledge the generous support of the Office of Naval Research and the guidance that we have received from the technical monitor, G. D. Roy.

Matt Anderson
University of Minnesota

Date submitted: 06 Aug 2009