Abstract Submitted for the DFD09 Meeting of The American Physical Society

Energy spectra of stably stratified turbulence YOSHIFUMI KIMURA, Nagoya Univ., JACKSON HERRING, NCAR — Energy spectra for forced stably stratified turbulence are investigated numerically using the Direct Numerical Simulations (DNS) with 1024³ grid points. The calculation is done by solving the 3D Navier-Stokes equations under the Boussinesq approximation pseudospectrally. Using toroidal-poloidal decomposition (Craya-Herring decomposition), the velocity field is divided into the vortex mode (ϕ_1) and the wave mode (ϕ_2). The ϕ_1 and ϕ_2 spectra as a function of hogizontal wave numbers, k_{\perp} , has the form of

$$E_{\perp\Phi_{1}}(k_{\perp}) = \begin{cases} \alpha \eta_{\perp\Phi_{1}}^{\prime/\sigma} k_{\perp}^{-3} & (k_{\perp} < k_{c}) \\ C_{K} \varepsilon_{\perp\Phi_{1}}^{2/3} k_{\perp}^{-5/3} & (k_{\perp} > k_{c}) \end{cases}, \\ E_{\perp\Phi_{2}}(k_{\perp}) = \begin{cases} \beta \sqrt{N\varepsilon_{\perp\Phi_{2}}} k_{\perp}^{-2} & (k_{\perp} < k_{c}) \\ C_{K} \varepsilon_{\perp\phi_{2}}^{2/3} k_{\perp}^{-5/3} & (k_{\perp} > k_{c}) \end{cases},$$

where $\eta_{\perp\phi_1}$ and $\varepsilon_{\perp\phi_2}$ are the horizontal enstrophy dissipation based on the ϕ_1 energy and the horizontal energy dissipation based on the ϕ_2 energy, respectively. For both cases, $C_K \approx 1.2 \sim 2.0$ is obtained being close to the Kolmogorov constant. To understand the reason for the steeper spectra than the Kolmogorov -5/3 for large scales, inviscid calculations (truncated Euler's equation) without forcing are conducted. We verified that emergence of steeper spectra for large scales and thermalization spectra for small scales.

> Yoshi Kimura Nagoya Univ.

Date submitted: 06 Aug 2009

Electronic form version 1.4