Abstract Submitted for the DFD09 Meeting of The American Physical Society

Convectonsinperi-odic and bounded domains EDGAR KNOBLOCH, University of California at
Berkeley, ISABEL MERCADER, ORIOL BATISTE, ARANTXA ALONSO, UPC,
Barcelona, Spain — Numerical continuation is used to compute spatially localized
convection in a binary fluid with no-slip laterally insulating boundary conditions and
the results compared with the corresponding ones for periodic boundary conditions.
The change in the boundary conditions produces a dramatic change in the snaking
bifurcation diagram that describes the organization of localized states with periodic
boundary conditions: the snaking branches turn continuously into a large amplitude
state that resembles periodic convection with defects at the sidewalls. Odd parity
convectons are more affected by the boundary conditions since the sidewalls suppress
the horizontal pumping action that accompanies these states in spatially periodic
domains [O. Batiste et al., J. Fluid Mech. 560, 149 (2006)].

Edgar Knobloch University of California at Berkeley

Date submitted: 07 Aug 2009

Electronic form version 1.4