Experimental evidence of a phase transition in a closed turbulent flow

FRANÇOIS DAVIAUD, PIERRE-PHILIPPE CORTET, ARNAUD CHIFFAUDEL, BÉRÉGÈRE DUBRULLE, CEA, IRAMIS, SPEC, CNRS URA 2464, Groupe Instabilités & Turbulence, 91191 Gif-sur-Yvette, France — Using stereoscopic particle image velocimetry, we experimentally study the susceptibility to symmetry breaking of a closed turbulent von Kármán swirling flow from $Re = 150$ to $Re \approx 10^6$. The susceptibility of the mean flow is shown to increase from 1 to 45 as transition to turbulence proceeds from the laminar flow to the highly turbulent flow. We report a divergence of this susceptibility at an intermediate Reynolds number $Re = Re_\chi \approx 90000$ which gives experimental evidence that such a highly space and time fluctuating system can undergo a “phase transition”. This transition is furthermore associated with a peak in the amplitude of fluctuations of the instantaneous flow symmetry corresponding to intermittencies between metastable states. These states break spontaneously the symmetry of the forcing while the very long time-averaged mean flow respects the forcing symmetry.

Jean-Pierre Hulin
Laboratoire FAST, CNRS UMR 7608, Université Paris-Sud, Universite Pierre-et-Marie-Curie