An all-speed projection method for magneto-hydrodynamics1

RAVI SAMTANEY, King Abdullah University of Science and Technology, MARK ADAMS, Columbia University, PHILLIP COLELLA, DANIEL GRAVES, TERRY LIGOcki, BRIAN VAN STRAALEN, Lawrence Berkeley National Laboratory — We present an all-speed algorithm for magneto-hydrodynamics (MHD) similar to the work of Colella & Pao (J. Comput. Phys. 1999) for low speed hydrodynamics. The method is based on an asymptotic ordering of scales relevant for tokamak MHD physics. The central idea is to Hodge decompose the velocity, and a splitting of the magnetic guide field analogous to the pressure splitting in low Mach number hydrodynamics into a thermodynamic and an incompressible part. We present the derivation of the ideal MHD equations into slow (advective), intermediate and fast scales. The algorithm treats the slow advective scales using a Godunov-procedure while the intermediate and fast scales are treated implicitly using backward Euler. Results from numerical tests such as the MHD Kelvin-Helmholtz instability, magnetic reconnection and others will be presented. We will highlight the challenges of designing solvers for the intermediate scales.

1All authors acknowledge support by the US DOE SciDAC Program. R. Samtaney acknowledges support by KAUST.

Ravi Samtaney
PPPL

Date submitted: 04 Aug 2010

Electronic form version 1.4