On the correspondence between polymer-modified turbulence states and transitional states in Newtonian flows

YVES DUBIEF, School of Engineering, University of Vermont, Burlington, VT, CHRISTOPHER WHITE, Dept. of Mech. Eng., University of New Hampshire, Durham, NH — Polymer addition is known to reduce drag in wall-bounded flows up to an asymptotic state called maximum drag reduction (MDR). The definition of MDR is still largely empirical and its uniqueness is a matter of debate. Using direct numerical simulations, a correspondence is first established between MDR and a specific state of transition in boundary layer flow. A model is derived as a function of the flow topology of the transitional Newtonian flow and the FENE-P model. The model is then extended to natural convection where heat transfer reduction (HTR) and augmentation (HTA) are observed as a function of polymer length. Yet, HTR and HTA are topologically equivalent and again correspond to a transitional state of Rayleigh Benard convection flow. This suggests that polymer-modified turbulence may be predictable as a function of the polymer solution’s properties and transitional states of the corresponding Newtonian flow.

The wall-bounded turbulence work was performed as part of the 2010 CTR Summer Program, Stanford, CA.