Influence of temperature-dependent fluid properties on heat transfer in turbulent channel flow

ALFREDO SOLDATI, FRANCESCO ZONTA, CRISTIAN MARCHIOLI, Dept. Energy Technologies, University of Udine

— Forced-convection heat transfer in turbulent liquid flows is parametrized by a correlation between the Nusselt number, Nu, the flow Reynolds number, Re, and the Prandtl number, Pr. Most of existing expressions for such $Nu = f(Re, Pr)$ correlation were developed under the assumption of negligible dependence of the thermo-physical properties of the liquid on temperature. This may be a bottleneck when system optimization is required. In this work we use pseudo-spectral direct numerical simulation to investigate the influence of temperature-dependent fluid properties on the overall turbulent heat transfer. In particular, we focus on turbulent channel flow of water, and we let viscosity vary with temperature at fixed Pr. Compared to the case of constant thermo-physical properties, it is observed that, already at low Re, temperature-dependent variations alter velocity profiles, and modify both the Nusselt number and the friction factor significantly (up to about 10 %).

Alfredo Soldati
University of Udine

Date submitted: 05 Aug 2010