Pinch-off Dynamics of Non-Newtonian Fluids F.M. HUISMAN, S.R. GUTMAN, P. TABOREK, University of California-Irvine — The pinch-off dynamics of a variety of shear-thinning fluids (foams, concentrated emulsions, and slurries) were studied using high speed videography. The pinch was characterized by the variation of the minimum neck radius r_{min} as a function of the time to pinch t, with $r_{\text{min}} \propto t^\alpha$. The rheology of shear thinning fluids can be characterized by an exponent $\tau = k\dot{\gamma}^n$, with $n < 1$. We found that for a variety of shear-thinning fluids including mayonnaise and acrylic paint, r_{min} scales with t to a power α equal to the flow index for the particular fluid. The flow index was measured using a TA instruments AR-G2 rheometer. The flow index for acrylic paint was 0.440 ± 0.014 and r_{min} scales with t to the 0.41 ± 0.03; for mayonnaise the flow index was 0.355 ± 0.014; and r_{min} scales with t to the 0.35 ± 0.02. To study the transition from conventional Newtonian pinch, we systematically varied the concentration of a water-Xanthan gum mixture.

Fawn Huisman
University of California-Irvine

Date submitted: 05 Aug 2010

Electronic form version 1.4