Abstract Submitted for the DFD10 Meeting of The American Physical Society

Maximum Enstrophy Growth in Burgers Equation DIEGO AY-ALA, BARTOSZ PROTAS, Department of Mathematics and Statistics, McMaster University — The regularity of solutions of the Navier–Stokes equation is controlled by the boundedness of the enstrophy \mathcal{E} . The best estimate for its rate of growth is $d\mathcal{E}/[\sqcup \leq C\mathcal{E}^{\ni}]$, for C > 0, leading to the possibility of a finite–time blow–up when straightforward time integration is used. Recent numerical evidence by Lu & Doering (2008) supports the sharpness of the instantaneous estimate. Thus, the central question is how to extend the instantaneous estimate to a finite–time estimate in a way that will incorporate the dynamics imposed by the PDE. We state the problem of saturation of finite–time estimates for the enstrophy growth as a PDE–constrained optimization problem, using the Burgers equation as a "toy model". The following problem is solved numerically:

 $\max_{\phi} [\mathcal{E}(\mathcal{T}) - \mathcal{E}(\prime)] \quad \text{subject to} \quad \mathcal{E}(\prime) = \mathcal{E}_{\prime}$

where ϕ represents the initial data for Burgers equation, for a wide range of values of T > 0 and \mathcal{E}_{t} finding that the maximum enstrophy growth in finite time scales as \mathcal{E}_{t}^{α} with $\alpha \approx 3/2$, an exponent different from $\alpha = 3$ obtained by analytic means.

> Diego Ayala Department of Mathematics and Statistics, McMaster University

Date submitted: 05 Aug 2010

Electronic form version 1.4