Tracking Rigid Spherical Particles in Incompressible Flows via Dissipative Hydrodynamics

BRENT HOUCHENS, KENNETH DAVIS, Rice University, YONG SHI, ALBERT KIM, University of Hawaii at Manoa — Solutions for particle trajectories computed using dissipative hydrodynamics (DHD) for rigid spherical particles are discussed. DHD reproduces the many-body hydrodynamics of Stokesian Dynamics (SD), but is more computationally efficient. DHD satisfies the fluctuation-dissipation theorem of Dissipative Particle Dynamics (DPD) and therefore is not hindered by the relaxation-time limitations of Stokesian Dynamics. For a given continuum flow field, the translations and rotations of multiple particles are calculated taking into account both stochastic dissipative effects and deterministic conservative forces. Examples of particle tracking in two-dimensional and three-dimensional flows, computed via spectral element simulations, will be discussed.

Brent Houchens
Rice University

Date submitted: 06 Aug 2010