Dynamics of a laminar flow past a rotating bullet-shaped body

JOSE IGNACIO JIMÉNEZ-GONZÁLEZ, ENRIQUE SANMIGUEL-ROJAS, Universidad de Jaén, ALEJANDRO SEVILLA, Universidad Carlos III de Madrid, CARLOS MARTÍNEZ-BAZÁN, Universidad de Jaén — Numerical simulations are performed for laminar flow past a rotating bullet-shaped body of length-to-diameter ratio $L/D = 2$, ranging the non-dimensional angular rotation velocity, $\Omega = \omega R / u_\infty$, from 0 to 0.6, and covering the Reynolds number range $320 < Re < 430$. Three transition patterns stand out as Ω increases on the parametric map Ω- Re. When $\Omega \leq 0.3$, increasing rotation speeds have a stabilizing effect for the first transition, delaying the symmetry breaking bifurcation to higher values of Re, however it triggers the second bifurcation at lower Re than in the case of stationary bodies. Furthermore, the wake undergoes three different flow regimes as Re increases: axisymmetric, frozen (i.e. two counterrotating vortices aligned with the streamwise direction rotate around the axis with a different frequency than that of the body) and spiral flow. A different behavior has been observed in the range $0.3 \leq \Omega \leq 0.5$ where only a single transition exists. Finally, when $\Omega > 0.5$ there are also two transitions, both leading to different swirling flows.

1Supported by the projects DPI2008-06624-C02, P07-TEP02693 and P11-TEP5702.