Roles of Particle-Wall and Particle-Particle Interactions in Highly Confined Suspensions of Spherical Particles being Sheared at Low Reynolds Numbers

ASHOK SANGANI, National Science Foundation, ANDREAS ACRIVOS, City College of the City University of New York, PHILIPPE PEYLA, Laboratoire de Physique Interdisciplinaire — The roles of particle-wall and particle-particle interactions are examined for suspensions of spherical particles in a viscous fluid being confined and sheared at low Reynolds numbers by two parallel walls moving with equal but opposite velocities. It is shown that the channel-width scale interactions between the spheres tend to decrease the overall viscous dissipation in highly confined suspensions. In other words, the increase in the viscous dissipation caused by the particle-wall interactions is partially compensated by the particle-particle interactions. As a consequence, the total dissipation as a function of particle volume fraction in random suspensions may go through a maximum for a fixed ratio of sphere radius to spacing between the walls.

1On leave from Syracuse University

Ashok Sangani
National Science Foundation/ Syracuse University

Date submitted: 28 Jul 2011