Non-Boussinesq internal bores: Bridging the gap between the single layer, and Boussinesq cases

ZACHARY BORDEN, University of California, Santa Barbara, TILMAN KOBLITZ, Technical University of Denmark, ECKART MEIBURG, University of California, Santa Barbara — Internal bores, or hydraulic jumps, arise in many atmospheric and oceanographic phenomena. The classic single-layer hydraulic jump model accurately predicts a bore’s behavior when the density difference between the expanding and contracting layer is large (i.e. water and air), but fails in the Boussinesq limit. A two-layer model, where mass is conserved separately in each layer and momentum is conserved globally, does a much better job but requires for closure an assumption about the loss of energy across a bore. Our previous study used 2D direct numerical simulations in order to directly examine the energy fluxes within a bore, and was able to provide us with an appropriate closure relation in the Boussinesq case. Now, we have extended our simulations to non-Boussinesq bores in order to generate an analytical model that bridges the gap between single, and two-layer models. We also perform 3D large eddy simulations to confirm that our model and results generalize to three dimensions, and higher Reynolds numbers.

Zachary Borden
University of California, Santa Barbara

Date submitted: 28 Jul 2011