The dynamics of impacting and coalescing Newtonian droplets\textsuperscript{1}

JOSE RAFAEL CASTREJON-PITA, University of Cambridge, KRZYSZTOF J. KUBIAK, University of Leeds, ELEANOR S. BETTON, University of Cambridge, MARK C.T. WILSON, University of Leeds, ALFONSO A. CASTREJON-PITA, IAN M. HUTCHINGS, University of Cambridge, I4T PROJECT COLLABORATION — An experimental arrangement is described to study impact, coalescence and mixing between a sessile and an impacting droplet of glycerol/water striking a flat transparent substrate in air. We used high speed imaging to visualize and study the impact and coalescence of droplets from the side and from beneath. The impact parameters and liquid characteristics were chosen to match the typical dynamical conditions, based on Reynolds and Weber numbers, found in commercial drop-on-demand printing. The images were processed by particle image velocimetry and image processing algorithms to obtain velocity fields near the liquid-substrate interface, droplet geometries and contact line positions. The experimental results are compared with numerical simulations by the lattice Boltzmann method and good agreement is found. The experimental setup and its instrumentation are simple to reproduce and can be used in other practical applications.

\textsuperscript{1}This project was supported by the EPSRC and industrial partners in the I4T and Glassjet projects.

Jose Rafael Castrejon-Pita
University of Cambridge

Date submitted: 01 Aug 2011

Electronic form version 1.4