Abstract Submitted for the DFD11 Meeting of The American Physical Society

The Reynolds number near the transition to the ultimate state of turbulent Rayleigh-Bénard convection¹ XIAOZHOU HE, MPIDS, Goettingen, Germany, GUENTER AHLERS, University of California, Santa Barbara, DENIS FUNFSCHILLING, LSGC CNRS, Nancy, France, HOLGER NOBACH, EBERHARD BODENSCHATZ, MPIDS, Goettingen, Germany — Measurements of a Reynolds number Re for Rayleigh-Bénard convection (RBC) of a cylindrical sample over the Rayleigh-number range $2 \times 10^{12} \leq Ra \leq 2 \times 10^{15}$ and the Prandtlnumber range $0.79 \leq Pr \leq 0.86$ are presented. The aspect ratio $\Gamma \equiv D/L$ was 0.50 (D = 1.12 m was the diameter and L = 2.24 m was the height). We used the elliptic approximation of He and Zhang^{2,3} to determine an effective Re. For $Ra \geq 3 \times 10^{14}$ the data yielded $Re = Re_0Ra^{\alpha_{eff}}$ with $\alpha_{eff} \simeq 0.50$. This result is consistent with predictions for the ultimate state, where the boundary layers are turbulent.^{4,5}

¹Supported by the Max Planck Society, the Volkswagenstiftung, and NSF Grant DMR07-02111.

²G.-W. He and J.-B. Zhang, Phys. Rev. **73**, 055303 (2006)

³X. He, G. He, and P. Tong, Phys. Rev. **81**, 065303 (2010)

 $^4\mathrm{R.}$ H. Kraichnan, Phys. Fluids 5, 1374 (1962)

⁵S. Grossmann and D. Lohse, Phys. Fluids **23**, 045108 (2011)

Xiaozhou He MPIDS, Goettingen, Germany

Date submitted: 05 Aug 2011

Electronic form version 1.4