Abstract Submitted for the DFD11 Meeting of The American Physical Society

An experimental study of flow past an oscillating cylinder SAN-JAY KUMAR, CARLOS LOPEZ, GERMAN FRANCISCO, DAVOOD ASKARI, Department of Engineering, The University of Texas at Brownsville, CESAR ALE-JANDRO TOLEDO SUAREZ, OLIVER PROBST, Physics Department, Instituto Tecnologico y de Estudios Superiores de Monterrey (Mexico) — We present preliminary experimental results on flow past an oscillating cylinder at frequency ratios varying from 0 to 5 and oscillation amplitudes varying from $\pi/8$ to π . The experiments are conducted at Reynolds number of 185. The frequency ratio, f_R , is defined as the ratio of cylinder oscillation frequency to vortex shedding frequency from a non-oscillating cylinder. The diagnostic is done using hydrogen bubble technique for flow visualization in a plane. It is found that at one diameter downstream from the cylinder, vortex shedding frequency matches the forcing frequency (lock-on) at all $f_R > 1$ and all amplitudes; however, for $f_R < 1$ there is a window adjacent to $f_R = 1$ where lock-on occurs and this depends on oscillation amplitude. In the far wake at nine diameters from the cylinder, the lock-on region is centered around f_R = 1 and depends strongly on amplitude. The visualization of the vortical structures showed that near $f_R = 1.0$ the vortices became very compact and well formed in the visualization plane. Their size decreases considerably at much higher f_R 's in the near-wake. The motion pictures reveal interesting phenomenon of merger of vortices at certain f_R 's.

> Sanjay Kumar The University of Texas at Brownsville

Date submitted: 05 Aug 2011

Electronic form version 1.4