Abstract Submitted for the DFD11 Meeting of The American Physical Society

Active Control of Vortex Induced Vibrations of a Tethered Sphere in a Uniform Air Flow RENE VAN HOUT, Technion-Israel Institute of Technology, DAVID GREENBLATT, AMIT ZVI KATZ, Technion - Institute of Technology — VIV of two heavy tethered spheres ($D = 40 \text{ mm}, m^* =$ $m_{sphere}/\rho_f V_{sphere} = 21$ and 67, $L^* = L/D = 2.50$) were studied in a wind tunnel under uniform free stream velocities up to $U^* = U/f_n D = 15.9$, with and without acoustic control. Control was achieved using two speakers mounted on either side of the spheres and driven in-phase at f = 35Hz ($f^* = 22.3$). In the non-controlled case, the bifurcation map of transverse sphere oscillation amplitude, A_y , showed stationary motion as well as periodic and non-stationary oscillations with increasing U^* . For $m^* = 21$, A_y^{max} was about twice as large as for $m^* = 67$. Acoustic control dampened A_y^{max} in the periodic region $(m^* = 67)$ and increased A_y^{max} in the nonstationary region for both spheres. Sphere boundary layer dynamics in the three different bifurcation regions were studied using time resolved PIV with a horizontal laser sheet positioned at the center of the sphere. The field of view was 55x55 mm^2 containing one quarter of the sphere. Results will be presented on the vortex dynamics near the sphere's surface with and without acoustic control.

> Rene van Hout Technion-Israel Institute of Technology

Date submitted: 05 Aug 2011

Electronic form version 1.4