Inherent Variability in Short-time Wind Turbine Statistics from Turbulence Structure in the Atmospheric Surface Layer

ADAM LAVELY, GANESH VIJAYAKUMAR, JAMES BRASSEUR, ERIC PATERSON, MICHAEL KINZEL, Penn State University — Using large-eddy simulation (LES) of the neutral and moderately convective atmospheric boundary layers (NBL, MCBL), we analyze the impact of coherent turbulence structure of the atmospheric surface layer on the short-time statistics that are commonly collected from wind turbines. The incoming winds are conditionally sampled with a filtering and thresholding algorithm into high/low horizontal and vertical velocity fluctuation coherent events. The time scales of these events are $\sim 5 - 20$ blade rotations and are roughly twice as long in the MCBL as the NBL. Horizontal velocity events are associated with greater variability in rotor power, lift and blade-bending moment than vertical velocity events. The variability in the industry standard 10 minute average for rotor power, sectional lift and wind velocity had a standard deviation of $\sim 5\%$ relative to the “infinite time” statistics for the NBL and $\sim 10\%$ for the MCBL. We conclude that turbulence structure associated with atmospheric stability state contributes considerable, quantifiable, variability to wind turbine statistics. Supported by NSF and DOE.

Adam Lavely
Penn State University

Date submitted: 11 Aug 2011

Electronic form version 1.4