Overlimiting current and deionization shocks in porous media

MARTIN Z. BAZANT, DAOSHENG S. DENG, ALI MANI, E. VICTORIA DY-DEK, Department of Chemical Engineering, MIT — Salt transport in bulk electrolytes occurs by diffusion and convection, but in microfluidic devices and porous media, surface conduction and electro-osmotic flow also contribute to ionic fluxes. The classical theory of electrokinetic phenomena in porous media assumes linear response to a small voltage, where the electrolyte concentration is only weakly perturbed. When a large voltage or concentration gradient is imposed, some surprising nonlinear electrokinetic phenomena result from the competition between bulk and interfacial transport in a microstructure. At constant voltage, the microstructure can sustain an over-limiting current (exceeding diffusion limitation) without any hydrodynamic or chemical instability. At constant current, a “deionization shock” can propagate through the microstructure, leaving behind a macroscopic region depleted of ions and particles. This talk will present experimental evidence for surface-driven overlimiting current and deionization shocks in porous glass frits, interpreted with the help of mathematical models, and applications to water deionization by “shock electrodialysis.”

1Supported by the MIT Energy Initiative.