Logarithmic temperature profiles in turbulent Rayleigh-Bénard convection

GUENTER AHLERS, UCSB, XIAOZHOU HE, MPIDS Goettingen Germany, DENIS FUNFSCHILLING, LSGC CNRS Nancy, France, DENNIS VAN GILS, EBERHARD BODENSCHATZ, MPIDS Goettingen Germany — We report experimental results for the vertical profiles of the mean temperature $\langle T \rangle$ and the rms temperature fluctuation σ for turbulent Rayleigh-Bénard convection in the interior of a cylindrical sample of aspect ratio $\Gamma \equiv D/L = 0.50$ ($D = 112$ cm and $L = 224$ cm are the diameter and height respectively) over the Rayleigh number range $4 \times 10^{12} \leq Ra \leq 10^{15}$ for a Prandtl number $Pr \simeq 0.8$. We found that $\langle T \rangle$ and σ vary linearly with $\ln(z/L)$ where z is the distance from the bottom or top plate. Such a dependence had been predicted for the ultimate state ($Ra > 5 \times 10^{14}$), but was unexpected for the classical state ($Ra < 10^{13}$). The results for $\langle T \rangle$ and σ suggest similarities to the logarithmic profiles found for the velocity in shear flows.

1Supported by the Max Planck Society, the Volkswagen Stiftung, the DFD Sonderforschungsbereich SFB963, and NSF grant DMR11-58514.