Large-Eddy Simulations of Plasma Control for Separated Supersonic Flow

NICHOLAS BISEK, JONATHAN POGGIE, Air Force Research Laboratory — The Navier-Stokes equations were solved using a high-fidelity time-implicit numerical scheme and an implicit large-eddy simulation approach to investigate plasma-based flow control for supersonic flow over a compression ramp. The configuration includes a flat-plate region to develop an equilibrium turbulent boundary-layer at Mach 2.25, which was validated against a set of experimental measurements. The fully turbulent boundary-layer flow traveled over a 24° ramp and produced an unsteady shock-induced separation. A control strategy to suppress the separation through a magnetically-driven gliding-arc actuator was explored. The size, strength, and placement of the actuator were developed based on recent experiments. Three control scenarios were examined: steady control, pulsing with a 50% duty cycle, and Joule heating. The results show the control mechanism reduced the time-mean separation length for all three situations. The case without pulsing and Joule heating was the most effective, with a reduction in the separation length by more than 75%. The controller was also found to significantly reduce the low-frequency content of the turbulent kinetic energy spectra within the separated region and reduce the total kinetic energy downstream of reattachment.

1Funded in part by the Air Force Office of Scientific Research, under a laboratory task monitored by Dr. J. Schmisseur, AFOSR/RSA. The computational resources were supported by a grant of supercomputer time from the U.S. Department of Defense.