Temperature fluctuations in turbulent Rayleigh–Bénard convection for \(Ra\) up to \(2 \times 10^{14}\) and \(Pr\) \(\simeq 0.8\)

XIAOZOU HE, DENNIS P.M. VAN GILS, EBERHARD BODENSCHATZ, MPI Dynamics and Self-Organization, Goettingen, Germany, GUENTER AHLERS, UCSB, Santa Barbara, USA — We report on measurements of temperature space-time cross-correlation functions \(C_T(r, \tau)\) in Rayleigh-Bénard convection (RBC) near the side wall of a cylindrical sample with aspect ratio \(\Gamma \equiv D/L = 1.00\) (\(D = 1.12\) m was the diameter and \(L = 1.12\) m was the height). The results covered the Rayleigh-number range \(4 \times 10^{11} \leq Ra \leq 2 \times 10^{14}\) and the Prandtl-number range \(0.79 \leq Pr \leq 0.86\). Our results extend previous measurements for a lower \(Ra\) range\(^2\) and confirmed the elliptic approximation (EA) of He and Zhang\(^3\) up to \(Ra \simeq 10^{14}\). Using the EA, we determined an effective Reynolds number near the transition to the ultimate state of turbulent RBC.\(^4\)

\(^1\)Supported by the Max Planck Society, the Volkswagen Stiftung, the DFD Sonderforschungsbereich SFB963, and NSF grant DMR11-58514.

Xiaozhou He
MPI Dynamics and Self-Organization, Goettingen

Date submitted: 25 Jul 2012
Electronic form version 1.4