Reynolds number measurements for turbulent Rayleigh-Bénard convection with $0.17 < Pr < 0.88$. JAMES HOGG, GUENTER AHLERS, UC Santa Barbara — We report Reynolds-number measurements from space-time cross-correlation functions of shadowgraph images taken of turbulent Rayleigh-Bénard convection in a cylindrical cell of height $L = 9.5$ mm and aspect ratio $\Gamma = 10.6$. The fluids were pure gases with Prandtl-numbers $Pr \approx 0.7$ and gas mixtures with $0.17 \leq Pr < 0.7$. The Rayleigh-number range was $10^5 \leq Ra \leq 10^8$. The elliptic approximation of He and Zhang2 was used to calculate the mean flow velocity U and the rms fluctuation velocity V. For this system U was close to zero, and the Reynolds number Re_V based on V had Ra- and Pr-dependences consistent with the Grossmann-Lohse model.3

1Work supported by NSF grant DMR11-58514.
