Abstract Submitted for the DFD12 Meeting of The American Physical Society

Reynolds number measurements for turbulent Rayleigh-Bénard convection with $0.17 < Pr < 0.88^1$ JAMES HOGG, GUENTER AHLERS, UC Santa Barbara — We report Reynolds-number measurements from space-time cross-correlation functions of shadowgraph images taken of turbulent Rayleigh-Bénard convection in a cylindrical cell of height L=9.5 mm and aspect ratio $\Gamma=10.6$. The fluids were pure gases with Prandtl-numbers $Pr\approx 0.7$ and gas mixtures with $0.17 \le Pr < 0.7$. The Rayleigh-number range was $10^5 \le Ra \le 10^8$. The elliptic approximation of He and Zhang² was used to calculate the mean flow velocity U and the rms fluctuation velocity V. For this system U was close to zero, and the Reynolds number Re_V based on V had Ra- and Pr-dependences consistent with the Grossmann-Lohse model.³

James Hogg UC Santa Barbara

Date submitted: 26 Jul 2012 Electronic form version 1.4

¹Work supported by NSF grant DMR11-58514.

²G.-W. He and J.-B. Zhang, Phys. Rev. E, **73**, 055303 (2006).

³S. Grossmann and D. Lohse, Phys. Rev. E, **66**, 016305 (2002).