Abstract Submitted
for the DFD12 Meeting of
The American Physical Society

Isogeometric analysis of drop deformation in isoviscous shear flow
AMIN AHMADI JONEIDI, CLEMENS VERHOOSSEL, PATRICK ANDERSON,
Eindhoven university of technology — We use the Boundary Integral Method (BIM)
to study the deformation of a drop in iso-viscous shear flow. Traditionally the
drop surface is represented by a linear triangular mesh. The novelty of this work
compared to prior studies is applying Isogeometric Analysis (IGA) to define the drop
interface. In this method splines are used as smooth shape functions to create the
surface instead of the traditional non-smooth triangular surface. This makes IGA
applicable in the case when the physics at the interface becomes more complicated,
for example if the deformation of a red blood cell or a vesicle is investigated; these
involve higher-order surface gradients in the force jump across the interface. For
the iso-viscous drop it is observed that the drop deforms and deviates from the
initial spherical shape and orients itself in the fixed direction. Different values of
the capillary number -which is the measure of the ratio between viscous and surface
tension forces- have been studied and the results match very well with traditional
BIM. IGA results for more complex interfacial force jumps are discussed.

Amin Ahmadi Joneidi
Eindhoven university of technology

Date submitted: 31 Jul 2012

Electronic form version 1.4