Abstract Submitted for the DFD12 Meeting of The American Physical Society

Characterization of vortex-induced vibration of a flexible cylinder JESSICA SHANG, HOWARD STONE, ALEXANDER SMITS, Princeton University — In this study, the phenomena of 3D vortex-induced vibration (VIV) of a flexible cylinder (diameter D) is shown to be distinct from 2D VIV. We seek to identify correlations between wake regimes and vibration responses for a low massratio $(m^* = 1.2)$, flexible $(E = 1.2 \text{ MPa}, \text{ natural frequency in water } f_N = 0.37$ Hz) cantilevered cylinder undergoing cross-flow for reduced velocity $U^* = 20-120$ $(U^* = U/f_N D)$. A P+S wake mode appears for a range of U^* ; the onset of this range may be correlated with a hysteretic jump to an upper branch in the transverse amplitude response $(A_V^* = A_V/D)$ at several locations along the midspan. This asymmetric wake mode does not present a unique transverse frequency response $(f_Y^* = f_Y/f_N)$ in the cylinder. The upper branch in the amplitude response gives way to an abrupt decrease in A_V^* to a lower branch, accompanied by a bifurcation in f_Y^* . The bifurcation takes place over a narrow range of U^* where the lower f_Y^* gradually transfers power to a higher f_Y^* , and may demarcate a wake transition regime between laminar and turbulence states.

> Jessica Shang Princeton University

Date submitted: 01 Aug 2012

Electronic form version 1.4