Enhanced two photon fluorescence microfluidic sensor based on dual cladding photonic-crystal fiber1 LYUBOV AMITONOVA, ILYA FEDOTOV, Department of Neuroscience, Kurchatov Institute National Research Center, ANDREY FEDOTOV, ALEKSEI ZHELTIKOV, Physics Department, International Laser Center, M. V. Lomonosov Moscow State University — The architecture of photonic-crystal fibers (PCFs) suggests a variety of strategies for optical sensing. A combination of TPA approaches with capabilities of fiber-optic probes offers numerous advantages, suggesting a convenient format for beam delivery, facilitating manipulation of excitation radiation, and allowing this excitation to be applied locally and selectively. In this work, we show that a PCF with a special design can realize different protocols of optical sensing, simultaneously serving, whenever necessary, for the collection and on-line monitoring of liquid-phase samples. Specially designed PCF is shown to substantially increase the guided-wave luminescent response from molecules excited through two-photon absorption (TPA) by femtosecond near-infrared laser pulses. Biophotonic implications of this waveguide TPL-response enhancement include fiber-format solutions for online monitoring of drug delivery and drug activation, interrogation of neural activity, biosensing, endoscopy, and locally controlled singlet oxygen generation in photodynamic therapy.

1This work was supported by the Russian Foundation for Basic Research, project 11-04-12185-ofi-m.

Lyubov Amitonova
Dept of Neuroscience, Kurchatov Institute National Research Center

Date submitted: 01 Aug 2012 Electronic form version 1.4