Numerical analysis of radiation- and streaming-induced microparticle acoustophoresis

RUNE BARNKOB, PETER BARKHOLT MULLER, HENRIK BRUUS, Technical University of Denmark, MADS JAKOB HERRING JENSEN, COMSOL A/S — We present a numerical analysis of the acoustophoretic motion of microparticles suspended in a liquid-filled microchannel excited with an ultrasound field tuned to resonance. The imposed first-order ultrasound field generates second-order fields leading to two particle forces with a non-zero time-average: the acoustic radiation force from sound-wave scattering off the particles and the Stokes drag force from the induced acoustic streaming flow. We consider a viscous heat-conducting liquid and non-interacting spherical particles. The model is based on the thermoviscous acoustic equations and takes into account the micrometer-thin but crucial viscous boundary layers at rigid walls. Using a numerical tracking scheme, we quantify the acoustophoretic particle velocities for experimentally relevant parameters. We characterize the transition from radiation- to streaming-dominated acoustophoretic motion as function of particle size, channel geometry, and material properties. See also Muller et al., Lab Chip 12, in press (2012).

1This research was supported by the Danish Council for Independent Research, Technology and Production Sciences, Grants No. 274-09-0342 and No. 11-107021.