Abstract Submitted for the DFD12 Meeting of The American Physical Society

Parameterization of turbulent diffusivity in stratified flows using microstructure observations and DNS¹ BENJAMIN MATER, SUBHAS VENAYAGAMOORTHY, Colorado State University — In oceanic flows, the eddy diffusivity of density, K_d , is commonly approximated using the Osborn-Cox model with a constant mixing efficiency, Γ . Many have sought to improve upon the accuracy of this approach by parameterizing the variability in Γ using the buoyancy Reynolds number ($Re_B = \varepsilon / \nu N^2$). In this study, we point out that $Re_B = Fr^2 Re_L$ (where $Fr = \varepsilon / kN$ and $Re_L = k^2 / \varepsilon \nu$) and is, thus, a mixed parameter that obscures explicit dependencies on the more fundamental parameters involving turbulent kinetic energy, k. Using microstructure observations, we demonstrate this non-uniqueness of Re_B and explore the independent effects of Fr and Re_L . Because k is not readily available from microstructure measurements, however, we investigate alternative methods to infer its value from measured Thorpe scales, L_T . Through physical reasoning, we argue that L_T should scale with a length scale dependent on k and not solely on dissipation ε . We test this reasoning using DNS of decaying grid turbulence.

¹Funded by the Office of Naval Research

Benjamin Mater Colorado State University

Date submitted: 06 Aug 2012

Electronic form version 1.4